A Transformational Property of

2-Dimensional Density Matrices

Nicholas Wheeler
January 2013

Introduction. This note derives from recent work related to decoherence models described by Zurek ${ }^{1}$ and Albrecht. ${ }^{2}$ In both models a qubit \mathcal{S} interacts with a high-dimensional system \mathcal{E}-the "environment." The dynamically evolved state of \mathcal{S} is described by a 2×2 hermitian matrix, the reduced density matrix $\mathbb{R}_{\mathcal{S}}$. The following discussion was motivated by issues that arose in that connection.

Structure of the characteristic polynomial. Let \mathbb{D} be diagonal

$$
\mathbb{D}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

and let its characteristic polynomial be denoted $p(x) \equiv \operatorname{det}(\mathbb{D}-x \mathbb{I})$. Obviously

$$
\begin{align*}
p(x) & =\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right) \\
& =x^{2}-\left(\lambda_{1}+\lambda_{2}\right) x+\lambda_{1} \lambda_{2} \\
& =x^{2}-\left(\lambda_{1}+\lambda_{2}\right) x+\frac{1}{2}\left[\left(\lambda_{1}+\lambda_{2}\right)^{2}-\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)\right] \\
& =x^{2}-T_{1} x+\frac{1}{2}\left(T_{1}^{2}-T_{2}\right) \tag{1}
\end{align*}
$$

where $T_{n} \equiv \operatorname{tr} \mathbb{D}^{n}$. More than fifty years ago I had occasion to develop-and have many times since had occasion to use - a population of trace formulæ of which (1) is a special instance. ${ }^{3}$ Remarkably, the formulæ in question pertain to all square matrices, and so in particular does (1): the diagonality assumption can be dispensed with. For any $2 \times 2 \mathbb{M}$ we have

$$
\begin{equation*}
p(x)=x^{2}-T_{1} x+\frac{1}{2}\left(T_{1}^{2}-T_{2}\right) \quad \text { with } \quad T_{n} \equiv \operatorname{tr} \mathbb{M}^{n} \tag{2}
\end{equation*}
$$

${ }^{1}$ W. H. Zurek, "Environment-induced superselection rules," Phys. Rev. D 26, 1862-1880 (1982); M. Schlosshauer, Decoherence ξ° the Quantum-to-Classical Transition (2008), §2.10.

2 A. Albrecht, "Investigating decoherence in a simple model," Phys. Rev. D 46, 5504-5520 (1992).
${ }^{3}$ See, for example, "A mathematical note: Algorithm for the efficient evaluation of the trace of the inverse of a matrix" (December 1996), where (1) appears as illustrative equation (12).
from which it follows in particular that for any such \mathbb{M}

$$
\begin{equation*}
\operatorname{det} \mathbb{M}=\frac{1}{2}\left(T_{1}^{2}-T_{2}\right) \tag{3}
\end{equation*}
$$

Application to density matrices. Density matrices are positive-definite hermitian matrices with unit trace, and vice versa. Hermiticity insures that the eigenvalues of such a matrix \mathbb{R} are real, positive definiteness

$$
(\alpha|\mathbb{R}| \alpha)>0 \quad: \quad \text { all column vectors } \mid \alpha)
$$

requires that they be non-negative, and since they are required to sum to unity each must fall within the unit interval: $0 \leq \lambda_{1}, \lambda_{2} \leq 1$. From this condition it follows that

$$
0 \leq \lambda_{i}^{2} \leq \lambda_{i} \leq 1 \quad \text { with } \lambda_{i}^{2}=\lambda_{i} \text { iff } \lambda_{i}=0 \text { else } 1
$$

From $\lambda_{1}+\lambda_{2}=1$ is follows moreover that if one λ vanishes the other must be unity. We therefore have

$$
\operatorname{tr} \mathbb{R}=1 \quad \text { and } \quad 0<\operatorname{tr} \mathbb{R}^{2} \leq 1:\left\{\begin{array}{l}
\text { mixed cases } \\
\text { pure cases }
\end{array}\right.
$$

In mixed cases the spectral decomposition of \mathbb{R} reads

$$
\left.\mathbb{R}_{\text {mixed }}=\lambda_{1} \mid r_{1}\right)\left(r_{1}\left|+\lambda_{2}\right| r_{2}\right)\left(r_{2} \mid\right.
$$

where $\left.\mid r_{1}\right)$ and $\left.\mid r_{2}\right)$ are orthonormal eigenvectors, while in pure cases the spectral decomposition trivializes:

$$
\left.\mathbb{R}_{\text {pure }}=1 \mid r_{1}\right)\left(r_{1}|+0| r_{2}\right)\left(r_{2}|=| r_{1}\right)\left(r_{1} \mid\right.
$$

The characteristic polynomials of 2-dimensional density matrices have the structure

$$
p(x)=x^{2}-x+\frac{1}{2}\left(1-T_{2}\right)
$$

which gives

$$
\begin{equation*}
\lambda_{ \pm}=\frac{1}{2}\left[1 \pm \sqrt{2 T_{2}-1}\right] \tag{4}
\end{equation*}
$$

The invariable reality of $\lambda_{ \pm}$implies that in all cases

$$
\frac{1}{2} \leq T_{2} \leq 1
$$

(which sharpens the condition $0<\operatorname{tr} \mathbb{R}^{2} \leq 1$ stated above): maximal mixing arises at the lower bound (where the eigenvalues become equal and the spectrum degenerate), purity at the upper bound. Finally, (3) has become

$$
\begin{equation*}
\operatorname{det} \mathbb{R}=\frac{1}{2}\left(1-T_{2}\right) \tag{5}
\end{equation*}
$$

Transformations that preserve both \mathbf{T}_{1} and \mathbf{T}_{2}. The most general 2-dimensional density matrix can be written

$$
\mathbb{R}=\left(\begin{array}{cc}
p_{1} & r e^{+i \varphi} \\
r e^{-i \varphi} & p_{2}
\end{array}\right)
$$

of which the eigenvalues are

$$
\begin{align*}
\lambda_{ \pm} & =\frac{1}{2}\left[\left(p_{1}+p_{2}\right) \pm \sqrt{4 r^{2}+\left(p_{1}-p_{2}\right)^{2}}\right] \\
& =\frac{1}{2}\left[1 \pm \sqrt{4 r^{2}+\left(p_{1}-p_{2}\right)^{2}}\right] \tag{6}
\end{align*}
$$

while

$$
\begin{equation*}
\operatorname{det} \mathbb{R}=p_{1} p_{2}-r^{2} \tag{7}
\end{equation*}
$$

Comparison of (6) witn (4) supplies

$$
\begin{equation*}
T_{2}=2 r^{2}+1+\frac{1}{2}\left[\left(p_{1}-p_{2}\right)^{2}-1\right] \tag{8.1}
\end{equation*}
$$

while comparison of (7) with (5) supplies

$$
\begin{equation*}
T_{2}=2 r^{2}+1-2 p_{1} p_{2} \tag{8.2}
\end{equation*}
$$

The equivalence of equations (8) follows from

$$
\begin{equation*}
\frac{1}{2}\left[\left(p_{1}-p_{2}\right)^{2}-1\right]=\frac{1}{2}\left[\left(p_{1}-p_{2}\right)^{2}-\left(p_{1}+p_{2}\right)^{2}\right]=-2 p_{1} p_{2} \tag{9}
\end{equation*}
$$

We are interested in transformations

$$
\mathbb{R}=\left(\begin{array}{cc}
p_{1} & r e^{+i \varphi} \\
r e^{-i \varphi} & p_{2}
\end{array}\right) \longrightarrow \tilde{\mathbb{R}}=\left(\begin{array}{cc}
p_{1}+a & s \\
s & p_{2}-a
\end{array}\right)
$$

that preserve T_{2} (the preservation of T_{1} has been prearranged). This-by (5)is equivalent to asking for transformations that preserve det \mathbb{R}. We proceed stepwise. STEP 1: Trivially

$$
\operatorname{det}\left(\begin{array}{cc}
p_{1} & r e^{+i \varphi} \\
r e^{-i \varphi} & p_{2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
p_{1} & r \\
r & p_{2}
\end{array}\right)
$$

STEP 2: Show by (Mathematica-assisted) calculation that

$$
\operatorname{det}\left(\begin{array}{cc}
p_{1} & r \\
r & p_{2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
p_{1}+a & r+s \\
r+s & p_{2}-a
\end{array}\right)
$$

if $s=-r \pm \sqrt{r^{2}+a\left(p_{2}-p_{1}\right)-a^{2}} \equiv-r \pm R$. STEP 3: Observe that trivially

$$
\operatorname{det}\left(\begin{array}{cc}
p_{1}+a & \pm R \\
\pm R & p_{2}-a
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
p_{1}+a & \pm R e^{+i \vartheta} \\
\pm R e^{-i \vartheta} & p_{2}-a
\end{array}\right)
$$

The net implication is that the matrices

$$
\tilde{\mathbb{R}}(a, \vartheta)=\left(\begin{array}{cc}
p_{1}+a & e^{+i \vartheta} \sqrt{r^{2}+a\left(p_{2}-p_{1}\right)-a^{2}} \\
e^{-i \vartheta} \sqrt{r^{2}+a\left(p_{2}-p_{1}\right)-a^{2}} & p_{2}-a
\end{array}\right)
$$

are-for all a and all ϑ-tracewise (and \therefore determinantally) identical ${ }^{4}$ to \mathbb{R}, and give back \mathbb{R} as a special case:

$$
\tilde{\mathbb{R}}(0, \varphi)=\mathbb{R}
$$

The previous \pm has been absorbed into the definition of ϑ, and the unit trace presumption entails $p_{1}+p_{2}=1$.

Trace invariance implies-by (2)-that of the characteristic polynomial, whence of the eigenvalues (6), which by (9) can be written

$$
\lambda_{ \pm}=\frac{1}{2}\left[1 \pm \sqrt{1-4\left(p_{1} p_{2}-r^{2}\right)}\right]
$$

and give $\lambda_{+} \lambda_{-}=p_{1} p_{2}-r^{2}=\operatorname{det} \mathbb{R}(a, \vartheta)$. Positive semi-definiteness (which presumes reality) is seen to require

$$
0 \leq 1-4\left(p_{1} p_{2}-r^{2}\right) \leq 1
$$

The first inequality $1-4 p_{1} p_{2} \leq 4 r^{2}$ poses no constraint upon r^{2}, since $p_{1} p_{2}$ ranges on $\left[0, \frac{1}{4}\right]$ as $\left\{p_{1}, p_{2}\right\}$ partition the unit interval, giving $0 \leq 1-4 p_{1} p_{2}$. The second inequality can be written $r^{2} \leq p_{1} p_{2}$, which entails

$$
-r_{\max } \leq r \leq+r_{\max } \quad \text { with } \quad r_{\max }=\sqrt{p_{1} p_{2}}=\text { geometric mean } \leq \frac{1}{2}
$$

We note that while spectral positivity implies $\lambda_{+} \lambda_{-}=\operatorname{det} \mathbb{R}>0$, the converse is not true: $\operatorname{det} \mathbb{R}>0$ would result if both eigenvalues were negative. It is, therefore, somewhat accidental that in the present context the spectral positivity condition can be formulated $\operatorname{det} \mathbb{R}=p_{1} p_{2}-r^{2}>0$.

Spectral stability does not imply stability of the eigenvectors, though preservation of hermiticity ensures that the eigenvectors (except in spectrally degenerate cases) do remain orthogonal. I propose to describe the normalized eigenfunctions of $\tilde{\mathbb{R}}(a, \vartheta)$. But those turn out to be fairly intricate, and their structure not at all obvious, so I will take a moment to describge how those results were obtained.

The (unnormalized) symbolic eigenvectors supplied by Mathematica are of the asymmetric form

$$
\begin{equation*}
e_{1}=\binom{x_{1}}{1}, \quad e_{2}=\binom{x_{2}}{1} \tag{10.1}
\end{equation*}
$$

[^0]But orthonormal vectors in complex 2-space can invariably be displayed ${ }^{5}$

$$
u_{1}=e^{i \xi_{1}} \cdot\binom{\cos \alpha}{+\sin \alpha \cdot e^{i \beta}}, \quad u_{2}=e^{i \xi_{2}} \cdot\binom{\sin \alpha}{-\cos \alpha \cdot e^{i \beta}}
$$

We observe that if in u_{2} we flip the elements and change a sign we obtain a vector proportional to u_{1} (and vice versa). So as an alternative to (10.1) we have

$$
\begin{equation*}
f_{1}=\binom{1}{-x_{2}}, \quad f_{2}=\binom{1}{-x_{1}} \tag{10.2}
\end{equation*}
$$

Sums of eigenvectors are eigenvectors, so we obtain the symmetrized pair

$$
\begin{equation*}
g_{1}=\binom{1+x_{1}}{1-x_{2}}, \quad g_{1}=\binom{1+x_{2}}{1-x_{1}} \tag{10.3}
\end{equation*}
$$

That $g_{1} \perp g_{2}$ is seen to follow from $e_{1} \perp e_{2} \Longleftrightarrow 1+\bar{x}_{1} x_{2}=0=1+\bar{x}_{2} x_{1}$. The norms of g_{1} and g_{2} are given by

$$
\begin{aligned}
\left|g_{1}\right| & =\sqrt{2+\left(x_{1}+\bar{x}_{1}\right)-\left(x_{2}+\bar{x}_{2}\right)+\left(\bar{x}_{1} x_{1}+\bar{x}_{2} x_{2}\right)} \\
\left|g_{2}\right| & =\sqrt{2-\left(x_{1}+\bar{x}_{1}\right)+\left(x_{2}+\bar{x}_{2}\right)+\left(\bar{x}_{1} x_{1}+\bar{x}_{2} x_{2}\right)}
\end{aligned}
$$

It is by this strategy that I have (with major assistance by Mathematica) constructed (and checked) the eigenvectors reported below:

In the context that motivated this discussion the off-diagonal elements of $\tilde{\mathbb{R}}(a, \vartheta)$ are real; indeed, the constrants which we have been motivated to impose upon $\left\{p_{1}, p_{2}, a\right\}$ render all elements real, so we can dispense with all allusions to the complex conjugates of variables. Introducing these auxiliary definitions

$$
\begin{array}{rlrl}
p & =p_{1} \quad \text { so } \quad p_{2}=1-p & & \\
A(a) & =\sqrt{r^{2}+a(1-2 p)-a^{2}} & =\sqrt{r^{2}+a\left(p_{2}-p_{1}\right)-a^{2}} \\
B(a) & =\frac{1}{2}-p-a & =\frac{1}{2}\left(p_{2}-p_{1}\right)-a \\
C & =\frac{1}{2} \sqrt{1+4 r^{2}-4 p(1-p)} & =\frac{1}{2} \sqrt{1+4\left(r^{2}-p_{1} p_{2}\right)} \\
& =\frac{1}{2} \sqrt{2 T_{2}-1}
\end{array}
$$

we look to the eigenvalues/vectors of the matrix

$$
\mathbb{R}(a)=\left(\begin{array}{cc}
p_{1}+a & A(a) \\
A(a) & p_{2}-a
\end{array}\right)
$$

which by design has the property that $T_{1} \equiv \operatorname{tr} \mathbb{R}(a)=1$ and

$$
T_{2} \equiv \operatorname{tr} \mathbb{R}^{2}(a)=\operatorname{tr}\left(\begin{array}{cc}
p_{1} & r \\
r & p_{2}
\end{array}\right)^{2}=2 r^{2}+p_{1}^{2}+p_{2}^{2}=1+2\left(r^{2}-p_{1} p_{2}\right) \quad: \quad \text { all } a
$$

The eigenvalues are

$$
\lambda_{1}=\frac{1}{2}-C \quad \text { and } \quad \lambda_{2}=\frac{1}{2}+C
$$

[^1]which are seen to supply $\lambda_{1}+\lambda_{2}=1=T_{1}$ and
$$
\lambda_{1}^{2}+\lambda_{2}^{2}=\frac{1}{2}+\frac{1}{2} C^{2}=1+2\left(r^{2}-p_{1} p_{2}\right)=T_{2}
$$
-as anticipated. The (unnormalized) eigenvectors are
$$
g_{1}=\binom{A-B-C}{A+B-C} \quad \text { and } \quad g_{2}=\binom{A-B+C}{A+B+C}
$$

In confirmation of orthogonality we (with Mathematica's assistance) verify that

$$
(A-B)^{2}-C^{2}+(A+B)^{2}-C^{2}=2\left(A^{2}+B^{2}-C^{2}\right)=0
$$

The respective norms are

$$
\begin{aligned}
\left|g_{1}\right| & =\sqrt{2\left[(A-C)^{2}+B^{2}\right]} \\
& =2 \sqrt{(C-A) C} \quad \star \\
\left|g_{2}\right| & =\sqrt{2\left[(A+C)^{2}+B^{2}\right]} \\
& =2 \sqrt{(C+A) C} \quad \star
\end{aligned}
$$

where the equations marked \star follow from the previously-remarked circumstance that the definitions of A, B and C entail $A^{2}+B^{2}-C^{2}=0$.

In the case $a=0$ we have

$$
\begin{aligned}
A(0) & =r \\
B(0) & =\frac{1}{2}-p \quad \\
& =\frac{1}{2}\left(p_{2}-p_{1}\right) \\
C & =\frac{1}{2} \sqrt{1+4 r^{2}-4 p(1-p)}=\frac{1}{2} \sqrt{1+4\left(r^{2}-p_{1} p_{2}\right)} \\
& \\
& \mathbb{R}(0)=\mathbb{R}=\left(\begin{array}{cc}
p_{1} & r \\
r & p_{2}
\end{array}\right)
\end{aligned}
$$

The values of T_{1} and T_{2} are unchanged (that was the whole point of this exercise!) and so also therefore do the values of λ_{1} and λ_{2}. The eigenvectors become

$$
\begin{aligned}
g_{01} & =\binom{r-\frac{1}{2}\left(p_{2}-p_{1}\right)-\frac{1}{2} \sqrt{1+4\left(r^{2}-p_{1} p_{2}\right)}}{r+\frac{1}{2}\left(p_{2}-p_{1}\right)-\frac{1}{2} \sqrt{1+4\left(r^{2}-p_{1} p_{2}\right)}} \\
g_{02} & =\binom{r-\frac{1}{2}\left(p_{2}-p_{1}\right)+\frac{1}{2} \sqrt{1+4\left(r^{2}-p_{1} p_{2}\right)}}{r+\frac{1}{2}\left(p_{2}-p_{1}\right)+\frac{1}{2} \sqrt{1+4\left(r^{2}-p_{1} p_{2}\right)}}
\end{aligned}
$$

with norms

$$
\begin{aligned}
\left|g_{01}\right| & =2 \sqrt{\left(-r+\frac{1}{2} \sqrt{1+4\left(r^{2}-p_{1} p_{2}\right)}\right) \frac{1}{2} \sqrt{1+4\left(r^{2}-p_{1} p_{2}\right)}} \\
\left|g_{02}\right| & =2 \sqrt{\left(+r+\frac{1}{2} \sqrt{1+4\left(r^{2}-p_{1} p_{2}\right)}\right) \frac{1}{2} \sqrt{1+4\left(r^{2}-p_{1} p_{2}\right)}}
\end{aligned}
$$

In the trivial case $r=a=0$ the preceding results give

$$
\begin{aligned}
A_{0}(0) & =r \\
B_{0}(0) & =\frac{1}{2}-p \quad=\frac{1}{2}\left(p_{2}-p_{1}\right) \\
C_{0} & =\frac{1}{2} \sqrt{1-4 p(1-p)}=\frac{1}{2} \sqrt{1-4 p_{1} p_{2}} \\
& =\frac{1}{2}(1-2 p)
\end{aligned}
$$

$$
\mathbb{R}_{0}(0)=\mathbb{R}_{0}=\left(\begin{array}{cc}
p_{1} & 0 \\
0 & p_{2}
\end{array}\right)
$$

The eigenvalues become

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}-\frac{1}{2}(1-2 p)=p \quad \equiv p_{1} \\
& \lambda_{2}=\frac{1}{2}+\frac{1}{2}(1-2 p)=1-p=p_{2}
\end{aligned}
$$

as, of course, they must. The eigenvectors become

$$
\begin{gathered}
g_{001}=\binom{-\frac{1}{2}(1-2 p)-\frac{1}{2}(1-2 p)}{+\frac{1}{2}(1-2 p)-\frac{1}{2}(1-2 p)}=\binom{p_{1}-p_{2}}{0} \\
g_{002}=\binom{-\frac{1}{2}(1-2 p)+\frac{1}{2}(1-2 p)}{+\frac{1}{2}(1-2 p)+\frac{1}{2}(1-2 p)}=\binom{0}{p_{1}-p_{2}}
\end{gathered}
$$

of which the predicted norms are

$$
\begin{aligned}
& \left|g_{001}\right|=2 \sqrt{\frac{1}{2}(1-2 p) \cdot \frac{1}{2}(1-2 p)}=(1-2 p)=p_{1}-p_{2} \\
& \left|g_{002}\right|=\text { ditto }
\end{aligned}
$$

as again they must be.
Rotational aspects of the problem. Transformations that map density matrices to density matrices (i.e., which preserve hermiticity, unit trace and positivity) have come to be called "operations," and can in general be accomplished by Kraus processes

$$
\mathbb{R} \longrightarrow \mathbb{R}^{\prime}=\sum_{k} \mathbb{A}_{k} \mathbb{R} \mathbb{A}_{k}^{+} \quad \text { where } \quad \sum_{k} \mathbb{A}_{k}^{+} \mathbb{A}_{k}=\mathbb{I}
$$

We have been concerned with an operation that in the 2-dimensional case preserves not only T_{1} but also T_{2} (and therefore the spectrum). Kraus processes invariably preserve T_{1} but typcally do not preserve $\left\{T_{2}, T_{3}, \ldots\right\}$ unless the set of Kraus matrices $\left\{\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots, \mathbb{A}_{n}\right\}$ contains but a single member, when we have

$$
\mathbb{R} \longrightarrow \mathbb{R}^{\prime}=\mathbb{A} \mathbb{R} \mathbb{A}^{+} \quad \text { where } \quad \mathbb{A}^{+} \mathbb{A}=\mathbb{I}, \text { so } \mathbb{A} \text { is unitary }
$$

Such unitary similarity transformations do in any dimension preserve the traces of all powers of \mathbb{R}.

Hermiticity-preservation is by itself sufficient to ensure that the orthonormal eigenbasis $\left.\left\{\mid f_{j}\right): j=1,2, \ldots, n\right\}$ defined by \mathbb{R}^{\prime} is a unitary transform of the eigenbasis $\left.\left\{\mid e_{i}\right): i=1,2, \ldots, n\right\}$ defined by \mathbb{R}-this even when $\mathbb{R} \longrightarrow \mathbb{R}^{\prime}$ is not unitary; we have

$$
\left(f_{j} \mid=\sum_{i}\left(f_{j} \mid e_{i}\right)\left(e_{i} \mid \equiv \sum_{i} U_{j i}\left(e_{i} \mid\right.\right.\right.
$$

where

$$
\begin{aligned}
\sum_{i}\left(f_{j} \mid e_{i}\right)\left(e_{i} \mid f_{k}\right)=\left(f_{j} \mid f_{k}\right)=\delta_{j k} \Longrightarrow \sum_{i} U_{j i} \bar{U}_{i k} & =\delta_{j k} \\
& \Downarrow \\
\mathbb{U}^{+} & =\mathbb{I}
\end{aligned}
$$

We have been working in a context in which the eigenvectors are (to within an irrelevant complex phase factor) real-valued, so our \mathbb{U}-matrix is in fact a simple 2×2 rotation matrix. And the transformations that have concerned us preserve not only orthonormality but also T_{2} (whence both eigenvalues). We conclude that the operation

$$
\begin{align*}
\mathbb{R} & =\left(\begin{array}{cc}
p_{1} & r \\
r & p_{2}
\end{array}\right) \\
& \downarrow \tag{11.1}\\
\mathbb{R}(a) & =\left(\begin{array}{cc}
& p_{1}+a \\
\sqrt{r^{2}+a\left(p_{2}-p_{1}\right)-a^{2}} & \sqrt{r^{2}+a\left(p_{2}-p_{1}\right)-a^{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
p_{1}+a & A(a) \\
A(a) & p_{2}-a
\end{array}\right)
\end{align*}
$$

contemplataed on page 4 amounts to no more nor less than a simple rotational transformation

$$
\begin{align*}
\mathbb{R} & =\left(\begin{array}{cc}
p_{1} & r \\
r & p_{2}
\end{array}\right) \\
& \downarrow \tag{11.2}\\
\mathbb{R}(\alpha) & =\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
p_{1} & r \\
r & p_{2}
\end{array}\right)\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \\
& =\left(\begin{array}{cc}
p_{1} \cos ^{2} \alpha+p_{2} \sin ^{2} \alpha+r \sin 2 \alpha & \frac{1}{2}\left(p_{2}-p_{1}\right) \sin 2 \alpha+r \cos 2 \alpha \\
\frac{1}{2}\left(p_{2}-p_{1}\right) \sin 2 \alpha+r \cos 2 \alpha & p_{1} \sin ^{2} \alpha+p_{2} \cos ^{2} \alpha-r \sin 2 \alpha
\end{array}\right)
\end{align*}
$$

which, we observe, gives back $\operatorname{tr} \mathbb{R}(\alpha)=p_{1}+p_{2}=1$ and $\operatorname{tr} \mathbb{R}^{2}(\alpha)=p_{1}^{2}+p_{2}^{2}+2 r^{2}$ for all values of α.

Remarkably, the matrix elements $\left\{p_{1}, p_{2}, r\right\}$ enter linearly into (11.2), but non-linearly into (11.1). Consistency must hinge on the $\left\{p_{1}, p_{2}, r\right\}$-dependence of α. I show now how this comes about.

Working from either of the diagonal conditions

$$
\begin{aligned}
& p_{1} \cos ^{2} \alpha+p_{2} \sin ^{2} \alpha+r \sin 2 \alpha=p_{1}+a \\
& p_{2} \cos ^{2} \alpha+p_{1} \sin ^{2} \alpha-r \sin 2 \alpha=p_{2}-a
\end{aligned}
$$

we write $\tau \equiv \tan \alpha$ and use $\sin ^{2} \alpha=\tau^{2} /\left(1+\tau^{2}\right), \cos ^{2} \alpha=1 /\left(1+\tau^{2}\right)$ to obtain

$$
\begin{equation*}
\left(a+p_{1}-p_{2}\right) \tau^{2}-2 r \tau+a=0 \tag{12.1}
\end{equation*}
$$

of which the solutions are

$$
\tau_{ \pm} \equiv \tan \alpha_{ \pm}=\frac{r \pm \sqrt{r^{2}+a\left(p_{2}-p_{1}\right)-a^{2}}}{a-\left(p_{2}-p_{1}\right)}=\frac{r \pm A(a)}{a-\left(p_{2}-p_{1}\right)}
$$

Working on the other hand from either of the (identical) off-diagonal conditions

$$
\frac{1}{2}\left(p_{2}-p_{1}\right) \sin 2 \alpha+r \cos 2 \alpha=A(a)
$$

we use $\sin 2 \alpha=2 \tau /\left(1+\tau^{2}\right), \cos 2 \alpha=\left(1-\tau^{2}\right) /\left(1+\tau^{2}\right)$ to obtain

$$
\begin{equation*}
(A+r) \tau^{2}+\left(p_{2}-p_{1}\right) \tau+(A-r)=0 \tag{12.2}
\end{equation*}
$$

where again $A=A(a)=\sqrt{r^{2}+a\left(p_{2}-p_{1}\right)-a^{2}}$. Notice that the equations (12) impose distinct quadratic conditions on τ. The solutions of (12.2) are

$$
\begin{aligned}
\hat{\tau}_{ \pm} & =\frac{ \pm\left(p_{2}-p_{1}\right)-\sqrt{4 r^{2}+\left(p_{2}-p_{1}\right)^{2}-4 A^{2}}}{2(r+A)} \\
& =\frac{\left. \pm\left(p_{2}-p_{1}\right)-\left(\left(p_{2}-p_{1}\right)-2 a\right)\right)}{2(r+A)} \\
& =\left\{\begin{array}{l}
\frac{a}{r+A} \\
\frac{\left(p_{2}-p_{1}\right)-a}{r+A}
\end{array}\right.
\end{aligned}
$$

We have interest only in the simultaneous solution of (12.1) and (12.2). With Mathematica's assistance we survey the possibilities, with the following results:

$$
\begin{array}{lll}
\tau_{+}=\hat{\tau}_{+} & : & \text {true } \\
\tau_{+}=\hat{\tau}_{-} & : & \text {false } \\
\tau_{-}=\hat{\tau}_{+} & : & \text {false } \\
\tau_{-}=\hat{\tau}_{-} & : & \text {false }
\end{array}
$$

The implication is that

$$
\begin{equation*}
\tau \equiv \tan \alpha=\frac{a}{r+\sqrt{r^{2}+a\left(p_{2}-p_{1}\right)-a^{2}}} \tag{13}
\end{equation*}
$$

To check the accuracy or this result, we insert the implied evaluations of

$$
\sin \alpha=\frac{\tau}{1+\tau^{2}} \quad \text { and } \quad \cos \alpha=\frac{1}{1+\tau^{2}}
$$

into (11.2) and, according to Mathematica, do in fact recover

$$
\mathbb{R}(\alpha)=\left(\begin{array}{cc}
p_{1}+a & \sqrt{r^{2}+a\left(p_{1}-p_{2}\right)-a^{2}} \\
\sqrt{r^{2}+a\left(p_{1}-p_{2}\right)-a^{2}} & p_{2}-a
\end{array}\right)
$$

Concluding remarks. Let the characteristic polynomial of an n-dimensional square matrix \mathbb{M} be written

$$
\operatorname{det}(\mathbb{M}-x \mathbb{I})=c_{0} x^{n}+c_{1} x^{n-1}+\cdots+c_{n-1} x^{1}+c_{n}
$$

By the Cayley-Hamilton theorem $c_{0} \mathbb{M}^{n}+c_{1} \mathbb{M}^{n-1}+\cdots+c_{n-1} \mathbb{M}+c_{n} \mathbb{I}=\mathbb{O}$, so

$$
\mathbb{M}^{n+1}=-\left(1 / c_{0}\right)\left\{c_{1} \mathbb{M}^{n}+c_{2} \mathbb{M}^{n-1} \cdots+c_{n-1} \mathbb{M}^{2}+c_{n} \mathbb{M}\right\}
$$

of which the trace reads

$$
T_{n+1}=-\left(1 / c_{0}\right)\left\{c_{1} T_{n}+c_{2} T_{n-1}+\cdots+c_{n-1} T_{2}+c_{n} T_{1}\right\}
$$

It is known, ${ }^{3,6}$ moreover, that the coefficients $\left\{c_{0}, c_{1}, \ldots, c_{n}\right\}$ can be developed as multinomials in the low-order traces $\left\{T_{0}, T_{1}, \ldots, T_{n}\right\}$; specifically (look again to (2))

$$
\begin{aligned}
c_{0} & =(-)^{n} 1 \\
c_{1} & =(-)^{n-1} T_{1} \\
c_{2} & =(-)^{n-2} \frac{1}{2!}\left[T_{1}^{2}-T_{2}\right] \\
c_{3} & =(-)^{n-3} \frac{1}{3!}\left[T_{1}^{3}-3 T_{1} T_{2}+2 T_{3}\right] \\
& \vdots \\
& \\
c_{k} & =(-)^{n-k} \frac{1}{k!}\left|\begin{array}{ccccccc}
T_{1} & T_{2} & T_{3} & T_{4} & \cdots & \cdots & T_{k} \\
1 & T_{1} & T_{2} & T_{3} & \cdots & \cdots & T_{k-1} \\
0 & 2 & T_{1} & T_{2} & \cdots & \cdots & T_{k-2} \\
0 & 0 & 3 & T_{1} & \cdots & \cdots & T_{k-3} \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & (k-1) & T_{1}
\end{array}\right| \leq k \leq n \\
& \vdots \\
c_{n} & =\operatorname{det} \mathbb{M}=\text { trace-wise development of the determinant }
\end{aligned}
$$

The relevant implication is that high-order traces can be described (recursively) in terms of leading-order traces

$$
T_{p}=f_{p}\left(T_{1}, T_{2}, \ldots, T_{n}\right) \quad: \quad p>n
$$

And therefore that transformations $\mathbb{M} \longrightarrow \mathbb{M}^{\prime}$ which preserve leading-order traces automatically preserve all traces, and have therefore the form

$$
\mathbb{M} \longrightarrow \mathbb{M}^{\prime}=\mathbb{S} \mathbb{M} \mathbb{S}^{-1}
$$

It follows, moreover, that the eigenvalues of \mathbb{M} are - since they can evidently be developed as algebraic functions

$$
\lambda_{k}\left(T_{1}, T_{2}, \ldots, T_{n}\right) \quad: \quad k=1,2, \ldots n
$$

of the leading-order traces-are invariant under such transformations.

[^2]We have been concerned in these pages with a 2-dimensional problem. Our objective was to describe transformations $\mathbb{M} \longrightarrow \mathbb{M}^{\prime}$ which preserve the properties characteristic of density matrices (hermiticity, positivity and unit trace) and additionally preserve T_{2}, which is conventionally used to quantify the "degree of mixedness." ${ }^{7}$ In two dimensions the invariance of T_{1} and T_{2} has been seen to imply the invariance of the characteristic polynomial (whence of the spectrum), of traces of all orders, and that

$$
\begin{equation*}
\mathbb{M} \longrightarrow \mathbb{M}^{\prime}=\mathbb{S} \mathbb{M} \mathbb{S}^{-1} \quad \text { with } \quad \mathbb{S} \text { unitary } \tag{14}
\end{equation*}
$$

If - as we have, for expository reasons been content to assume - the elements of \mathbb{M} are real then "unitary" becomes "rotational." Elements of $\mathbb{S} \in O(2)$ are identified by a single parameter α. At (11.1) we encountered an alternative one-parameter construction

$$
\left(\begin{array}{cc}
p_{1} & r \\
r & p_{2}
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
p_{1}+a & A \\
A & p_{2}-a
\end{array}\right)
$$

where the specific structure of A was forced by the required invarinace of T_{2}. At (13) we describe the relationship between the parametrs α and a.

In $n=3$ dimensions the invariance of T_{1} and T_{2} does not enforce the invariance of T_{3} or of higher order traces. Transformations of type (14) describe now only a subset of the possibilities (which is to say: if $n=3$ then T_{2}-preserving transformations can, in general, not be presented as instances of (14)), and

$$
\left(\begin{array}{ccc}
p_{1} & r & s \\
r & p_{2} & t \\
s & t & p_{3}
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
p_{1}+a_{1} & A & B \\
A & p_{2}+a_{2} & C \\
B & C & p_{3}+a_{3}
\end{array}\right):\left\{\begin{array}{l}
p_{1}+p_{2}+p_{3}=1 \\
a_{1}+a_{2}+a_{3}=0
\end{array}\right.
$$

poses a much more difficult analytical problem than the one treated here; the elements of $\mathbb{S} \in O(3)$ are 3-parameter objects, but additional parameters enter into the construction of $\{A, B, C\}$. As n advances beyond 3 the problem becomes progressively more intractable.
${ }^{7}$ The defining properties ensure that every density matrix can be written

$$
\mathbb{R}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right) \quad: \quad \text { all } \lambda_{i} \in[0,1] \text { and } \sum \lambda_{1}=1
$$

from which it follows that

$$
T_{1}=1 \geq T_{2} \geq T_{3} \geq \cdots \geq T_{n}
$$

where all inequalities become equalities if and only if \mathbb{R} refers to a pure mixture. This means that the traces $T_{k>2}$ serve as well (if less conveniently than) T_{2} to quantify "degree of mixedness."

[^0]: ${ }^{4}$ I understand this phrase to mean " T_{1} and T_{2}-preserving."

[^1]: ${ }^{5}$ See Advanced Quantum Topics (2000), Chapter 1, page 5.

[^2]: ${ }^{6}$ See also "Some applications of an elegant formula due to V. F. Ivanoff," Notes for a seminar presented 28 May 1969 to the Applied Math Club at Portland State University, expecially page 14.

